On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems
In this paper we study the lower semicontinuity problem for a supremal functional of the form with respect to the strong convergence in , furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.
In this paper we study the lower semicontinuity problem for a supremal functional of the form with respect to the strong convergence in L∞(Ω), furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur's lemma for gradients of uniformly converging sequences is proved.
Motivated by the study of multidimensional control problems of Dieudonné-Rashevsky type, we raise the question how to understand to notion of quasiconvexity for a continuous function f with a convex body K instead of the whole space as the range of definition. In the present paper, we trace the consequences of an infinite extension of f outside K, and thus study quasiconvex functions which are allowed to take the value +∞. As an appropriate envelope, we introduce and investigate the lower semicontinuous...
Let f: ℝⁿ → ℝ be a nonconstant polynomial function. Using the information from the "curve of tangency" of f, we provide a method to determine the Łojasiewicz exponent at infinity of f. As a corollary, we give a computational criterion to decide if the Łojasiewicz exponent at infinity is finite or not. Then we obtain a formula to calculate the set of points at which the polynomial f is not proper. Moreover, a relation between the Łojasiewicz exponent at infinity of f and the problem of computing...
New contributions concerning the minimal displacement of points under mappings (defect of fixed point) are obtained.
An optimization problem for the unilateral contact between a pseudoplate and a rigid obstacle is considered. The variable thickness of the pseudoplate plays the role of a control variable. The cost functional is a regular functional only in the smooth case. The existence of an optimal thickness is verified. The penalized optimal control problem is considered in the general case.
We study the flat region of stationary points of the functional under the constraint , where is a bounded domain in . Here is a function which is concave for small and convex for large, and is a given constant. The problem generalizes the classical minimal resistance body problems considered by Newton. We construct a family of partially flat radial solutions to the associated stationary problem when is a ball. We also analyze some other qualitative properties. Moreover, we show the...
In variational calculus, the minimality of a given functional under arbitrary deformations with fixed end-points is established through an analysis of the so called second variation. In this paper, the argument is examined in the context of constrained variational calculus, assuming piecewise differentiable extremals, commonly referred to as extremaloids. The approach relies on the existence of a fully covariant representation of the second variation of the action functional, based on a family of...
We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.
We propose, analyze, and compare several numerical methods for the computation of the deformation of a pressurized martensitic thin film. Numerical results have been obtained for the hysteresis of the deformation as the film transforms reversibly from austenite to martensite.