Previous Page 2

Displaying 21 – 36 of 36

Showing per page

Stick-slip transition capturing by using an adaptive finite element method

Nicolas Roquet, Pierre Saramito (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The numerical modeling of the fully developed Poiseuille flow of a newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is based on the...

Stick-slip transition capturing by using an adaptive finite element method

Nicolas Roquet, Pierre Saramito (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The numerical modeling of the fully developed Poiseuille flow of a Newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is based on the...

Structural Properties of Solutions to Total Variation Regularization Problems

Wolfgang Ring (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In dimension one it is proved that the solution to a total variation-regularized least-squares problem is always a function which is "constant almost everywhere" , provided that the data are in a certain sense outside the range of the operator to be inverted. A similar, but weaker result is derived in dimension two.

Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities

Karl Kunisch, Daniel Wachsmuth (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimality conditions are derived for the regularized problems...

Sufficient optimality conditions and semi-smooth newton methods for optimal control of stationary variational inequalities

Karl Kunisch, Daniel Wachsmuth (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper sufficient second order optimality conditions for optimal control problems subject to stationary variational inequalities of obstacle type are derived. Since optimality conditions for such problems always involve measures as Lagrange multipliers, which impede the use of efficient Newton type methods, a family of regularized problems is introduced. Second order sufficient optimality conditions are derived for the regularized problems...

Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations

Ningning Yan (2009)

Applications of Mathematics

In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.

Symplectic Pontryagin approximations for optimal design

Jesper Carlsson, Mattias Sandberg, Anders Szepessy (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be...

Symplectic Pontryagin approximations for optimal design

Jesper Carlsson, Mattias Sandberg, Anders Szepessy (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the Hamiltonian; next the solution to its stationary Hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the Hamiltonian function...

Currently displaying 21 – 36 of 36

Previous Page 2