The search session has expired. Please query the service again.
The numerical modeling of the fully developed Poiseuille flow of a newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is based on the...
The numerical modeling of the fully developed Poiseuille flow
of a Newtonian fluid in a square section with
slip yield boundary condition at the wall is presented.
The stick regions in outer corners and the slip region in the center
of the pipe faces are exhibited.
Numerical computations cover the complete range of the dimensionless number describing
the slip yield effect, from a full slip to a full stick flow regime.
The resolution of variational inequalities
describing the flow is based on the...
In dimension one it is proved that the solution to a total variation-regularized
least-squares problem is always a function which is "constant almost everywhere" ,
provided that the data are in a certain sense outside the range of the operator
to be inverted. A similar, but weaker result is derived in dimension two.
In this paper sufficient second order optimality conditions for optimal control problems
subject to stationary variational inequalities of obstacle type are derived. Since
optimality conditions for such problems always involve measures as Lagrange multipliers,
which impede the use of efficient Newton type methods, a family of regularized problems is
introduced. Second order sufficient optimality conditions are derived for the regularized
problems...
In this paper sufficient second order optimality conditions for optimal control problems
subject to stationary variational inequalities of obstacle type are derived. Since
optimality conditions for such problems always involve measures as Lagrange multipliers,
which impede the use of efficient Newton type methods, a family of regularized problems is
introduced. Second order sufficient optimality conditions are derived for the regularized
problems...
In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.
The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be...
The powerful Hamilton-Jacobi theory is used for
constructing regularizations and error estimates for optimal design
problems. The constructed Pontryagin method is a simple and general
method for optimal design and reconstruction: the first, analytical,
step is to regularize the Hamiltonian; next the solution to its
stationary Hamiltonian system, a nonlinear partial differential
equation, is computed with the Newton method. The method is
efficient for designs where the Hamiltonian function...
Currently displaying 21 –
36 of
36