Mehrfach-orthogonale Simplexe in Räumen konstanter Krümmung
We show that pointwise bounds on the Menger curvature imply Lipschitz parametrization for general compact metric spaces. We also give some estimates on the optimal Lipschitz constants of the parametrizing maps for the metric spaces in Ω(ε), the class of bounded metric spaces E such that the maximum angle for every triple in E is at least π/2 + arcsinε. Finally, we extend Peter Jones's travelling salesman theorem to general metric spaces.
We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.
Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension.
In questo lavoro viene trovata un'espressione esplicita per i rappresentanti dei laterali di sottogrupi parabolici di gruppi di Coxeter aventi lunghezza minima: dato un sistema di Coxeter ed un suo sottogruppo parabolico , con , si determina esplicitamente in ogni laterale di un elemento avente lunghezza minima. Nella sezione 2 trattiamo i casi classici, i.e. , e . Dopo ciò, nella sezione 3, diamo una procedura per risolvere il problema nei restanti casi eccezionali, insieme a qualche...