Classification of flocks of the quadratic cone over fields of order at most 29.
Dedicated to the memory of the late professor Stefan Dodunekov on the occasion of his 70th anniversary. We classify up to multiplier equivalence maximal (v, 3, 1) optical orthogonal codes (OOCs) with v ≤ 61 and maximal (v, 3, 2, 1) OOCs with v ≤ 99. There is a one-to-one correspondence between maximal (v, 3, 1) OOCs, maximal cyclic binary constant weight codes of weight 3 and minimum dis tance 4, (v, 3; ⌊(v − 1)/6⌋) difference packings, and maximal (v, 3, 1) binary cyclically permutable constant...
For every metric space X we introduce two cardinal characteristics and describing the capacity of balls in X. We prove that these cardinal characteristics are invariant under coarse equivalence, and that two ultrametric spaces X,Y are coarsely equivalent if . This implies that an ultrametric space X is coarsely equivalent to an isometrically homogeneous ultrametric space if and only if . Moreover, two isometrically homogeneous ultrametric spaces X,Y are coarsely equivalent if and only if ...
In this paper we show that well-known relationships connecting the Clifford algebra on negative euclidean space, Vahlen matrices, and Möbius transformations extend to connections with the Möbius loop or gyrogroup on the open unit ball in -dimensional euclidean space . One notable achievement is a compact, convenient formula for the Möbius loop operation , where the operations on the right are those arising from the Clifford algebra (a formula comparable to for the Möbius loop multiplication...
In the paper we deal with a task about two circles touching in a rectangle. The assignment of the task was formulated in a fuzzy way, so solvers understood it differently. We present extracts from the authentic solutions which reflect this phenomenon. We suggest an approach to such tasks, how to solve them and how to assess their solutions.
This paper discusses properties of the Higson corona by means of a quotient on coarse ultrafilters on a proper metric space. We use this description to show that the corona functor is faithful and reflects isomorphisms.