Curvature and -strict convexity.
This paper describes local configurations of some planar triangulations. A Gauss-Bonnet-like formula holds locally for a kind of discrete “curvature” associated to such triangulations.
We approach the problem of defining curvature on a graph by attempting to attach a ‘best-fit polytope’ to each vertex, or more precisely what we refer to as a configured star. How this should be done depends upon the global structure of the graph which is reflected in its geometric spectrum. Mean curvature is the most natural curvature that arises in this context and corresponds to local liftings of the graph into a suitable Euclidean space. We discuss some examples.
This article extends to three dimensions results on the curvature of the conflict curve for pairs of convex sets of the plane, established by Siersma [3]. In the present case a conflict surface arises, equidistant from the given convex sets. The Gaussian, mean curvatures and the location of umbilic points on the conflict surface are determined here. Initial results on the Darbouxian type of umbilic points on conflict surfaces are also established. The results are expressed in terms of the principal...