Covering abelian groups with cyclic subsets.
We consider both standard and twisted actions of a (real) Coxeter group on the complement to the complexified reflection hyperplanes by combining the reflections with complex conjugation. We introduce a natural geometric class of special involutions in and give explicit formulae which describe both actions on the total cohomology in terms of these involutions. As a corollary we prove that the corresponding twisted representation is regular only for the symmetric group , the Weyl groups...
We first define the curvature indices of vertices of digital objects. Second, using these indices, we define the principal normal vectors of digital curves and surfaces. These definitions allow us to derive the Gauss-Bonnet theorem for digital objects. Third, we introduce curvature flow for isothetic polytopes defined in a digital space.
This paper describes local configurations of some planar triangulations. A Gauss-Bonnet-like formula holds locally for a kind of discrete “curvature” associated to such triangulations.
We approach the problem of defining curvature on a graph by attempting to attach a ‘best-fit polytope’ to each vertex, or more precisely what we refer to as a configured star. How this should be done depends upon the global structure of the graph which is reflected in its geometric spectrum. Mean curvature is the most natural curvature that arises in this context and corresponds to local liftings of the graph into a suitable Euclidean space. We discuss some examples.