Displaying 981 – 1000 of 2516

Showing per page

Inhomogeneous extreme forms

Mathieu Dutour Sikirić, Achill Schürmann, Frank Vallentin (2012)

Annales de l’institut Fourier

G.F. Voronoi (1868–1908) wrote two memoirs in which he describes two reduction theories for lattices, well-suited for sphere packing and covering problems. In his first memoir a characterization of locally most economic packings is given, but a corresponding result for coverings has been missing. In this paper we bridge the two classical memoirs.By looking at the covering problem from a different perspective, we discover the missing analogue. Instead of trying to find lattices giving economical...

Integer partitions, tilings of 2 D -gons and lattices

Matthieu Latapy (2002)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2 D -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2 D -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.

Integer Partitions, Tilings of 2D-gons and Lattices

Matthieu Latapy (2010)

RAIRO - Theoretical Informatics and Applications

In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2D-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2D-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.

Currently displaying 981 – 1000 of 2516