Displaying 21 – 40 of 64

Showing per page

The moduli space of n tropically collinear points in Rd.

Mike Develin (2005)

Collectanea Mathematica

The tropical semiring (R, min, +) has enjoyed a recent renaissance, owing to its connections to mathematical biology as well as optimization and algebraic geometry. In this paper, we investigate the space of labeled n-point configurations lying on a tropical line in d-space, which is interpretable as the space of n-species phylogenetic trees. This is equivalent to the space of n x d matrices of tropical rank two, a simplicial complex. We prove that this simplicial complex is shellable for dimension...

The number of vertices of a Fano polytope

Cinzia Casagrande (2006)

Annales de l’institut Fourier

Let X be a Gorenstein, -factorial, toric Fano variety. We prove two conjectures on the maximal Picard number of X in terms of its dimension and its pseudo-index, and characterize the boundary cases. Equivalently, we determine the maximal number of vertices of a simplicial reflexive polytope.

The Polytope of m-Subspaces of a Finite Affine Space

Julie Christophe, Jean-Paul Doignon (2007)

RAIRO - Operations Research

The m-subspace polytope is defined as the convex hull of the characteristic vectors of all m-dimensional subspaces of a finite affine space. The particular case of the hyperplane polytope has been investigated by Maurras (1993) and Anglada and Maurras (2003), who gave a complete characterization of the facets. The general m-subspace polytope that we consider shows a much more involved structure, notably as regards facets. Nevertheless, several families of facets are established here. Then the...

The Salvetti complex and the little cubes

Dai Tamaki (2012)

Journal of the European Mathematical Society

For a real central arrangement 𝒜 , Salvetti introduced a construction of a finite complex Sal ( 𝒜 ) which is homotopy equivalent to the complement of the complexified arrangement in [Sal87]. For the braid arrangement 𝒜 k - 1 , the Salvetti complex Sal ( 𝒜 k - 1 ) serves as a good combinatorial model for the homotopy type of the configuration space F ( , k ) of k points in C , which is homotopy equivalent to the space C 2 ( k ) of k little 2 -cubes. Motivated by the importance of little cubes in homotopy theory, especially in the study of...

The skeleta of convex bodies

David G. Larman (2009)

Banach Center Publications

The connectivity and measure theoretic properties of the skeleta of convex bodies in Euclidean space are discussed, together with some long standing problems and recent results.

Currently displaying 21 – 40 of 64