-covered foliations of hyperbolic 3-manifolds.
Page 1 Next
Calegari, Danny (1999)
Geometry & Topology
Kai Cieliebak, Urs Frauenfelder, Alexandru Oancea (2010)
Annales scientifiques de l'École Normale Supérieure
The first two authors have recently defined Rabinowitz Floer homology groups associated to a separating exact embedding of a contact manifold into a symplectic manifold . These depend only on the bounded component of . We construct a long exact sequence in which symplectic cohomology of maps to symplectic homology of , which in turn maps to Rabinowitz Floer homology , which then maps to symplectic cohomology of . We compute , where is the unit cosphere bundle of a closed manifold...
H. Goldschmidt, J. Gasqui (1996)
Journal für die reine und angewandte Mathematik
Gerd Dethloff, Pham Hoang Ha (2014)
Annales de la faculté des sciences de Toulouse Mathématiques
In this article, we study the ramification of the Gauss map of complete minimal surfaces in and on annular ends. We obtain results which are similar to the ones obtained by Fujimoto ([4], [5]) and Ru ([13], [14]) for (the whole) complete minimal surfaces, thus we show that the restriction of the Gauss map to an annular end of such a complete minimal surface cannot have more branching (and in particular not avoid more values) than on the whole complete minimal surface. We thus give an improvement...
Gerd Dethloff, Pham Hoang Ha, Pham Duc Thoan (2016)
Colloquium Mathematicae
We study the ramification of the Gauss map of complete minimal surfaces in on annular ends. This is a continuation of previous work of Dethloff-Ha (2014), which we extend here to targets of higher dimension.
Viktor Schroeder, Susana Fornari (1990)
Mathematische Zeitschrift
Bejancu, Aurel, Farran, Hani Reda (2003)
International Journal of Mathematics and Mathematical Sciences
Luis A. Santaló (1980)
Stochastica
Our purpose is the study of the so called mixed random mosaics, formed by superposition of a given tesellation, not random, of congruent convex polygons and a homogeneous Poisson line process. We give the mean area, the mean perimeter and the mean number of sides of the polygons into which such mosaics divide the plane.
Tomoyuki Kakehi (1994)
Mathematische Annalen
Tomoyuki Kakehi (1995)
Mathematische Annalen
Carlos A. Berenstein, E.C. Tarabusi (1993)
Forum mathematicum
Rukimbira, Philippe (2004)
International Journal of Mathematics and Mathematical Sciences
J.-H. Eschenburg, C. Olmos (1994)
Commentarii mathematici Helvetici
Bogoslovsky, George Yu. (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Alix Deruelle (2011/2012)
Séminaire de théorie spectrale et géométrie
On s’intéresse ici à un invariant géométrique associé à toute variété riemannienne non compacte : le rapport asymptotique de courbure. On étudie son influence sur la topologie de la variété sous-jacente en présence d’autres contraintes géométrico-topologiques portant sur le volume asymptotique, la positivité de la courbure (de Ricci) et/ou la finitude du groupe fondamental (à l’infini).
Jacques Vey (1976)
Publications du Département de mathématiques (Lyon)
Junxia Li, John Ryan, Carmen J. Vanegas (2012)
Archivum Mathematicum
In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger...
Mäurer, Christoph, Jüttler, Bert (1999)
Journal for Geometry and Graphics
H. Shiga, M. Tezuka (1987)
Annales de l'institut Fourier
We show that an orientable fibration whose fiber has a homotopy type of homogeneous space with rank is totally non homologous to zero for rational coefficients. The Jacobian formed by invariant polynomial under the Weyl group of plays a key role in the proof. We also show that it is valid for mod. coefficients if does not divide the order of the Weyl group of .
Golasiński, Marek (1989)
Proceedings of the Winter School "Geometry and Physics"
Page 1 Next