The global theory of doubly periodic minimal surfaces.
We show how the theory of -manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.
We consider the gradient flow of the Yang–Mills–Higgs functional of Higgs pairs on a Hermitian vector bundle over a Kähler surface , and study the asymptotic behavior of the heat flow for Higgs pairs at infinity. The main result is that the gradient flow with initial condition converges, in an appropriate sense which takes into account bubbling phenomena, to a critical point of this functional. We also prove that the limiting Higgs pair can be extended smoothly to a vector bundle over...
We study the properties of the graph of a totally geodesic foliation. We limit our considerations to basic properties of the graph, and from them we derive several interesting corollaries on the structure of leaves.
We have, that all two-dimensional subspaces of the algebra of quaternions, containing a unit, are 2-dimensional subalgebras isomorphic to the algebra of complex numbers. It was proved in the papers of N. E. Belova. In the present article we consider a 2-dimensional subalgebra of complex numbers with basis and we construct the principal locally trivial bundle which is isomorphic to the Hopf fibration.