Grassmannian structures on manifolds.
We consider a mirror symmetry of simple elliptic singularities. In particular, we construct isomorphisms of Frobenius manifolds among the one from the Gromov–Witten theory of a weighted projective line, the one from the theory of primitive forms for a universal unfolding of a simple elliptic singularity and the one from the invariant theory for an elliptic Weyl group. As a consequence, we give a geometric interpretation of the Fourier coefficients of an eta product considered by K. Saito.
Dans cet article, nous étudions les propriétés asymptotiques d’une large classe de sous-groupe discrets du groupe linéaire réel : les groupes de Ping-Pong. Nous décrivons leur action sur l’espace projectif réel et le comportement à l’infini de leur fonction de comptage.
Soient un espace symétrique de type non compact et un groupe discret d’isométries de du type de Schottky. Dans cet article, nous donnons des équivalents des fonctions orbitales de comptage pour l’action de sur .
Nous considérons une famille de groupes libres et discrets d’isométries orientées agissant sur la boule hyperbolique et contenant des transformations paraboliques; nous démontrons que le nombre de géodésiques fermées de de longueur au plus est équivalent à , où désigne l’exposant critique de la série de Poincaré.
We propose a definition of a Riemannian groupoid, and we show that the Stefan foliation that it induces is a Riemannian (singular) foliation. We also prove that the homotopy groupoid of a Riemannian (regular) foliation is a Riemannian groupoid.
For an exact differential form on a Riemannian manifold to have a primitive bounded by a given function , by Stokes it has to satisfy some weighted isoperimetric inequality. We show the converse up to some constants if has bounded geometry. For a volume form, it suffices to have the inequality ( for every compact domain ). This implies in particular the “well-known” result that if is the universal covering of a compact Riemannian manifold with non-amenable fundamental group, then the volume...