Maximum principle for hypersurfaces.
The left-invariant sub-Riemannian problem on the group of motions of a plane is considered. Sub-Riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.
The notion of principal configuration of immersions of surfaces into R3, due to Sotomayor and Gutierrez [16] for lines of curvature and umbilics, is extended to that of mean directional configuration for immersed surfaces in R4. This configuration consists on the families of mean directionally curved lines, along which the second fundamental form points in the direction of the mean curvature vector, and their singularities, called here H-singularities.
Let M be a complete Riemannian manifold, M ∈ ℕ and p ≥ 1. We prove that almost everywhere on x = (x1,...,xN) ∈ MN for Lebesgue measure in MN, the measure μ ( x ) = 1 N ∑ k = 1 N δ x k has a uniquep–mean ep(x). As a consequence, if X = (X1,...,XN) is a MN-valued random variable with absolutely continuous law, then almost surely μ(X(ω)) has a unique p–mean. In particular if (Xn)n ≥ 1 is an independent sample of an absolutely continuous law in M, then the process ep,n(ω) = ep(X1(ω),...,Xn(ω)) is...
Since their introduction by Thurston, measured geodesic laminations on hyperbolic surfaces occur in many contexts. In this survey, we give a generalization of geodesic laminations on surfaces endowed with a half-translation structure (that is a singular flat surface with holonomy ), called flat laminations, and we define transverse measures on flat laminations similar to transverse measures on hyperbolic laminations, taking into account that the images of the leaves of a flat lamination are in...