Prevalence of non-Lipschitz Anosov foliations.
We clarify in which precise sense the theory of principal bundles and the theory of groupoids are equivalent; and how this equivalence of theories, in the differentiable case, reflects itself in the theory of connections. The method used is that of synthetic differential geometry.
We discuss frame bundles and canonical forms for geometries modeled on homogeneous spaces. Our aim is to introduce a geometric picture based on the non-holonomic jet bundles and principal prolongations as introduced in [Kolář, 71]. The paper has a partly expository character and we focus on very general aspects only. In the final section, various links to known results on the parabolic geometries are given briefly and some directions for further investigations are roughly indicated.
La méthode de « recollement » permettant de trouver des solutions des équations des contraintes relativistes est décrite. En particulier, on expose la méthode de Corvino-Schoen pour construire des familles de solutions sur une variété non-compacte avec géométrie prescrite sur un bout asymptotique, en insistant sur le recollement « non-localisé ». Une liste de résultats obtenus par divers auteurs à partir de telles techniques est alors fournie, incluant la question du recollement de métriques...
On étudie quelques équations complètement non linéaires issues de la géométrie conforme. Par une méthode de flot géométrique, on prouve l’existence des solutions. En utilisant ce résultat analytique, on obtient un théorème sur la topologie de la variété : soit une variété riemannienne compacte de dimension 3. S’il existe une metrique à courbure scalaire strictement positive telle que l’intégrale de la -courbure scalaire soit positive, alors est difféomorphe à un quotient de la sphere.