Uniqueness of conformal metrics with prescribed scalar and mean curvatures on compact manifolds with boundary.
The standard conformal compactification of Euclidean space is the round sphere. We use conformal geodesics to give an elementary proof that this is the only possible conformal compactification.
We study the geometric structure of a Gauduchon manifold of constant curvature. We give a necessary and sufficient condition for a Gauduchon manifold to be a Gauduchon manifold of constant curvature, and we classify the Gauduchon manifolds of constant curvature. Next, we investigate Weyl submanifolds of such manifolds.
We define Weyl submersions, for which we derive equations analogous to the Gauss and Codazzi equations for an isometric immersion. We obtain a necessary and sufficient condition for the total space of a Weyl submersion to admit an Einstein-Weyl structure. Moreover, we investigate the Einstein-Weyl structure of canonical variations of the total space with Einstein-Weyl structure.
In this paper we generalize the self-adjoint differential operator (used by Cheng-Yau) on hypersurfaces of a constant curvature manifold to general submanifolds. The generalized operator is no longer self-adjoint. However we present its adjoint operator. By using this operator we get the pinching theorem on Willmore submanifolds which is analogous to the pinching theorem on minimal submanifold of a sphere given by Simon and Chern-Do Carmo-Kobayashi.
We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation.
Im vorliegenden Artikel werden die Integral- und Differentialinvarianten der Möbiusschen Gruppe (-Gruppe) hergeleitet. Weiter wird die Berührung einer in der Möbiusebene (-Ebene) gegebenen Kurve mit Kurven mit konstanter -Krümmung untersucht und es werden die -Analoge der Mittelpunkte der Krümmung, der Evolute und des Schmiegobjektes gefunden. Diese Problematik wird auch vom kinematischen Standpunkt interpretiert.