Bending invariants for hypersurfaces
We use a Poincaré type formula and level set analysis to detect one-dimensional symmetry of stable solutions of possibly degenerate or singular elliptic equations of the formOur setting is very general and, as particular cases, we obtain new proofs of a conjecture of De Giorgi for phase transitions in and and of the Bernstein problem on the flatness of minimal area graphs in . A one-dimensional symmetry result in the half-space is also obtained as a byproduct of our analysis. Our approach...
We study affine invariants of plane curves from the view point of the singularity theory of smooth functions. We describe how affine vertices and affine inflexions are created and destroyed.
The notions of left Bol and Bol-Bruck actions are introduced. A purely algebraic analogue of a Nono family (Lie triple family), the so called Sabinin-Nono family, is given. It is shown that any Sabinin-Nono family is a left Bol-Bruck action. Finally it is proved that any local Nono family is a local left Bol-Bruck action. On general matters see [L.V. Sabinin 91, 99].
The existence of a singular curve in is proven, whose curvature can be extended to an function. The curve is the boundary of a two dimensional set, minimizing the length plus the integral over the set of the extension of the curvature. The existence of such a curve was conjectured by E. De Giorgi, during a conference held in Trento in July 1992.