Displaying 21 – 40 of 79

Showing per page

Some framed f -structures on transversally Finsler foliations

Cristian Ida (2011)

Annales UMCS, Mathematica

Some problems concerning to Liouville distribution and framed f-structures are studied on the normal bundle of the lifted Finsler foliation to its normal bundle. It is shown that the Liouville distribution of transversally Finsler foliations is an integrable one and some natural framed f(3, ε)-structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.

Some Para-Hermitian Related Complex Structures and Non-existence of Semi-Riemannian Metric on Some Spheres

Erdem, Sadettin (1999)

Serdica Mathematical Journal

It is shown that the spheres S^(2n) (resp: S^k with k ≡ 1 mod 4) can be given neither an indefinite metric of any signature (resp: of signature (r, k − r) with 2 ≤ r ≤ k − 2) nor an almost paracomplex structure. Further for every given Riemannian metric on an almost para-Hermitian manifold with the associated 2-form φ one can construct an almost Hermitian structure (under certain conditions, two different almost Hermitian structures) whose associated 2-form(s) is φ.

Some Properties of Lorentzian α -Sasakian Manifolds with Respect to Quarter-symmetric Metric Connection

Santu DEY, Arindam BHATTACHARYYA (2015)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The aim of this paper is to study generalized recurrent, generalized Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-generalized recurrent, semi-generalized Ricci-recurrent Lorentzian α -Sasakian manifold with respect to quarter-symmetric metric connection. Finally, we give an example of 3-dimensional Lorentzian α -Sasakian manifold with respect to quarter-symmetric metric connection.

Some properties of para-Kähler-Walker metrics

Mustafa Özkan, Murat İşcan (2014)

Annales Polonici Mathematici

A Walker 4-manifold is a pseudo-Riemannian manifold (M₄,g) of neutral signature, which admits a field of parallel null 2-planes. We study almost paracomplex structures on 4-dimensional para-Kähler-Walker manifolds. In particular, we obtain conditions under which these almost paracomplex structures are integrable, and the corresponding para-Kähler forms are symplectic. We also show that Petean's example of a nonflat indefinite Kähler-Einstein 4-manifold is a special case of our constructions.

Some properties of tangent Dirac structures of higher order

P. M. Kouotchop Wamba, A. Ntyam, J. Wouafo Kamga (2012)

Archivum Mathematicum

Let M be a smooth manifold. The tangent lift of Dirac structure on M was originally studied by T. Courant in [3]. The tangent lift of higher order of Dirac structure L on M has been studied in [10], where tangent Dirac structure of higher order are described locally. In this paper we give an intrinsic construction of tangent Dirac structure of higher order denoted by L r and we study some properties of this Dirac structure. In particular, we study the Lie algebroid and the presymplectic foliation...

Some remarks on quaternion-Hermitian manifolds

Andrew Swann (1997)

Archivum Mathematicum

Nearly-quaternionic Kähler manifolds of dimension at least  8 are shown to be quaternionic Kähler. Restrictions on the covariant derivative of the fundamental four-form of a semi-quaternionic Kähler are also found.

Currently displaying 21 – 40 of 79