Space time manifolds and contact structures.
2000 Mathematics Subject Classification: 53B05, 53B99.Let AN be an affinely connected space without a torsion. With the help of N independent vector fields and their reciprocal covectors is built an affinor which defines a composition Xn ×Xm (n+m = N). The structure is integrable. New characteristics by the coefficients of the derivative equations are found for special compositions, studied in [1], [3]. Two-dimensional manifolds, named as bridges, which cut the both base manifolds of the composition...
On a -dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.
On construit et classifie à conjugaison équivariante près toutes les formes de contact invariantes sur un fibré principal en cercles ( compact). Si , les formes obtenues induisent sur des formes de contact dans chaque classe d’homotopie de 1-formes sans zéros : on en déduit que admet une infinité de structures de contact non isomorphes.
This article deals with the local sub-Riemannian geometry on ℜ3, (D,g) where D is the distribution ker ω, ω being the Martinet one-form : dz - ½y2dxand g is a Riemannian metric on D. We prove that we can take g as a sum of squares adx2 + cd2. Then we analyze the flat case where a = c = 1. We parametrize the set of geodesics using elliptic integrals. This allows to compute the exponential mapping, the wave front, the conjugate and cut loci and the sub-Riemannian sphere. A direct consequence...
À toute structure de contact invariante par rapport à une action localement libre d’un groupe de Lie sur une variété compacte , on associe une fibration au-dessus de nouée, à la manière des pages d’un livre ouvert, le long de l’ensemble des points où l’orbite de l’action est tangente au plan de . Après en avoir déduit des contraintes sur et , on construit des structures de contact invariantes nouvelles à partir de fibrations nouées et on en donne des critères de classification équivariante....