Displaying 41 – 60 of 79

Showing per page

Special compositions in affinely connected spaces without a torsion

Zlatanov, Georgi (2011)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 53B05, 53B99.Let AN be an affinely connected space without a torsion. With the help of N independent vector fields and their reciprocal covectors is built an affinor which defines a composition Xn ×Xm (n+m = N). The structure is integrable. New characteristics by the coefficients of the derivative equations are found for special compositions, studied in [1], [3]. Two-dimensional manifolds, named as bridges, which cut the both base manifolds of the composition...

Stability under deformations of Hermite-Einstein almost Kähler metrics

Mehdi Lejmi (2014)

Annales de l’institut Fourier

On a 4 -dimensional compact symplectic manifold, we consider a smooth family of compatible almost-complex structures such that at time zero the induced metric is Hermite-Einstein almost-Kähler metric with zero or negative Hermitian scalar curvature. We prove, under certain hypothesis, the existence of a smooth family of compatible almost-complex structures, diffeomorphic at each time to the initial one, and inducing constant Hermitian scalar curvature metrics.

Structures de contact sur les fibrés principaux en cercles de dimension trois

Robert Lutz (1977)

Annales de l'institut Fourier

On construit et classifie à conjugaison équivariante près toutes les formes de contact invariantes sur un fibré principal en cercles M 3 B 2 ( M compact). Si M ˜ = S 3 , les formes obtenues induisent sur S 3 des formes de contact dans chaque classe d’homotopie de 1-formes sans zéros : on en déduit que M admet une infinité de structures de contact non isomorphes.

Sub-Riemannian sphere in Martinet flat case

A. Agrachev, B. Bonnard, M. Chyba, I. Kupka (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This article deals with the local sub-Riemannian geometry on ℜ3, (D,g) where D is the distribution ker ω, ω being the Martinet one-form : dz - ½y2dxand g is a Riemannian metric on D. We prove that we can take g as a sum of squares adx2 + cd2. Then we analyze the flat case where a = c = 1. We parametrize the set of geodesics using elliptic integrals. This allows to compute the exponential mapping, the wave front, the conjugate and cut loci and the sub-Riemannian sphere. A direct consequence...

Sur la géométrie des structures de contact invariantes

Robert Lutz (1979)

Annales de l'institut Fourier

À toute structure de contact σ invariante par rapport à une action localement libre d’un groupe de Lie G k sur une variété compacte M , on associe une fibration au-dessus de S k - 1 nouée, à la manière des pages d’un livre ouvert, le long de l’ensemble des points où l’orbite de l’action est tangente au plan de σ . Après en avoir déduit des contraintes sur G et M , on construit des structures de contact invariantes nouvelles à partir de fibrations nouées et on en donne des critères de classification équivariante....

Currently displaying 41 – 60 of 79