Characterization of higher-order tangent bundles.
Some examples of slant submanifolds of almost product Riemannian manifolds are presented. The existence of a useful orthonormal basis in proper slant submanifolds of a Riemannian product manifold is proved. The sectional curvature, the Ricci curvature and the scalar curvature of submanifolds of locally product manifolds of almost constant curvature are obtained. Chen-Ricci inequalities involving the Ricci tensor and the squared mean curvature for submanifolds of locally product manifolds of almost...
Consider a (1,1) tensor field J, defined on a real or complex m-dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point p ∈ M there exist functions , defined around p, such that and , j = 1,...,m. Then there exists a dense open set such that we can find coordinates, around each of its points, on which J is written with affine coefficients. This result is obtained by associating to J a bihamiltonian structure on T*M.
In this paper three dimensional real hypersurfaces in non-flat complex space forms whose k-th Cho operator with respect to the structure vector field ξ commutes with the structure Jacobi operator are classified. Furthermore, it is proved that the only three dimensional real hypersurfaces in non-flat complex space forms, whose k-th Cho operator with respect to any vector field X orthogonal to structure vector field commutes with the structure Jacobi operator, are the ruled ones. Finally, results...
A new class of -dimensional Lorentz spaces of index is introduced which satisfies some geometric conditions and can be regarded as a generalization of Lorentz space form. Then, the compact space-like hypersurface with constant scalar curvature of this spaces is investigated and a gap theorem for the hypersurface is obtained.