CR-warped product submanifolds of nearly Kaehler manifolds.
Dans ce texte, on définit, pour les immersions lagrangiennes de variétés fermées dans , une notion d’aire symplectique enlacée. Puis on construit, dans le cas , un certain nombre de surfaces lagrangiennes enlaçant une aire infinie. Dans le cas des surfaces exactes, elles ont le minimum de points doubles possible permis par la théorie (sauf la sphère), c’est-à-dire moins que prévu par quelques conjectures.
In this study, S-manifolds endowed with a semi-symmetric metric connection naturally related with the S-structure are considered and some curvature properties of such a connection are given. In particular, the conditions of semi-symmetry, Ricci semi-symmetry and Ricci-projective semi-symmetry of this semi-symmetric metric connection are investigated.
We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the φ-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use...
The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, -projectively flat, -projectively flat, --projectively flat, pseudo projectively flat and -pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat,...
Fondements de la théorie des -produits. Notion de -produit de Vey; tout -produit est équivalent à un -produit de Vey. Sur toute variété symplectique paracompacte telle que , il existe des -produits de Vey. Caractérisation des algèbres de Lie engendrées par antisymétrisation d’un -produit (éventuellement faible); ce sont à une équivalence près, les algèbres de Lie de Vey.On considère les variétés symplectiques sur lesquelles opère, par symplectomorphismes, un groupe de Lie . Si admet...
Tubular neighborhoods play an important role in modern differential topology. The main aim of the paper is to apply these constructions to geometry of structures on Riemannian manifolds. Deformations of tensor structures on a normal tubular neighborhood of a submanifold in a Riemannian manifold are considered in section 1. In section 2, this approach is used to obtain a Kählerian structure on the corresponding normal tubular neighborhood of the null section in the tangent bundle TM of a smooth manifold...