Page 1

Displaying 1 – 2 of 2

Showing per page

High-order angles in almost-Riemannian geometry

Ugo Boscain, Mario Sigalotti (2006/2007)

Séminaire de théorie spectrale et géométrie

Let X and Y be two smooth vector fields on a two-dimensional manifold M . If X and Y are everywhere linearly independent, then they define a Riemannian metric on M (the metric for which they are orthonormal) and they give to M the structure of metric space. If X and Y become linearly dependent somewhere on M , then the corresponding Riemannian metric has singularities, but under generic conditions the metric structure is still well defined. Metric structures that can be defined locally in this way...

Hölder equivalence of the value function for control-affine systems

Dario Prandi (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the continuity and the Hölder equivalence w.r.t. an Euclidean distance of the value function associated with the L1 cost of the control-affine system q̇ = f0(q) + ∑j=1m ujfj(q), satisfying the strong Hörmander condition. This is done by proving a result in the same spirit as the Ball–Box theorem for driftless (or sub-Riemannian) systems. The techniques used are based on a reduction of the control-affine system to a linear but time-dependent one, for which we are able to define a generalization...

Currently displaying 1 – 2 of 2

Page 1