Page 1

Displaying 1 – 2 of 2

Showing per page

Ultrarigid tangents of sub-Riemannian nilpotent groups

Enrico Le Donne, Alessandro Ottazzi, Ben Warhurst (2014)

Annales de l’institut Fourier

We show that the tangent cone at the identity is not a complete quasiconformal invariant for sub-Riemannian nilpotent groups. Namely, we show that there exists a nilpotent Lie group equipped with left invariant sub-Riemannian metric that is not locally quasiconformally equivalent to its tangent cone at the identity. In particular, such spaces are not locally bi-Lipschitz homeomorphic. The result is based on the study of Carnot groups that are rigid in the sense that their only quasiconformal maps...

Uniform Gaussian Bounds for Subelliptic Heat Kernels and an Application to the Total Variation Flow of Graphs over Carnot Groups

Luca Capogna, Giovanna Citti, Maria Manfredini (2013)

Analysis and Geometry in Metric Spaces

In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces over a...

Currently displaying 1 – 2 of 2

Page 1