Differential-geometrical conditions between geodesic curves and ruled surfaces in the Lorentz space.
In the framework of jet spaces endowed with a non-linear connection, the special curves of these spaces (h-paths, v-paths, stationary curves and geodesics) which extend the corresponding notions from Riemannian geometry are characterized. The main geometric objects and the paths are described and, in the case when the vertical metric is independent of fiber coordinates, the first two variations of energy and the extended Jacobi field equations are derived.
The structure of complex Finsler manifolds is studied when the Finsler metric has the property of the Kobayashi metric on convex domains: (real) geodesics locally extend to complex curves (extremal disks). It is shown that this property of the Finsler metric induces a complex foliation of the cotangent space closely related to geodesics. Each geodesic of the metric is then shown to have a unique extension to a maximal totally geodesic complex curve Σ which has properties of extremal disks. Under...