Page 1 Next

Displaying 1 – 20 of 31

Showing per page

Shells of monotone curves

Josef Mikeš, Karl Strambach (2015)

Czechoslovak Mathematical Journal

We determine in n the form of curves C corresponding to strictly monotone functions as well as the components of affine connections for which any image of C under a compact-free group Ω of affinities containing the translation group is a geodesic with respect to . Special attention is paid to the case that Ω contains many dilatations or that C is a curve in 3 . If C is a curve in 3 and Ω is the translation group then we calculate not only the components of the curvature and the Weyl tensor but...

Simplicial nonpositive curvature

Tadeusz Januszkiewicz, Jacek Świątkowski (2006)

Publications Mathématiques de l'IHÉS

We introduce a family of conditions on a simplicial complex that we call local k-largeness (k≥6 is an integer). They are simply stated, combinatorial and easily checkable. One of our themes is that local 6-largeness is a good analogue of the non-positive curvature: locally 6-large spaces have many properties similar to non-positively curved ones. However, local 6-largeness neither implies nor is implied by non-positive curvature of the standard metric. One can think of these results as a higher...

Some properties of geodesic semi E-b-vex functions

Adem Kiliçman, Wedad Saleh (2015)

Open Mathematics

In this study, we introduce a new class of function called geodesic semi E-b-vex functions and generalized geodesic semi E-b-vex functions and discuss some of their properties.

Spectrum of the Laplace operator and periodic geodesics: thirty years after

Yves Colin de Verdière (2007)

Annales de l’institut Fourier

What is called the “Semi-classical trace formula” is a formula expressing the smoothed density of states of the Laplace operator on a compact Riemannian manifold in terms of the periodic geodesics. Mathematical derivation of such formulas were provided in the seventies by several authors. The main goal of this paper is to state the formula and to give a self-contained proof independent of the difficult use of the global calculus of Fourier Integral Operators. This proof is close in the spirit of...

Stability of the geodesic flow for the energy

Eric Boeckx, José Carmelo González-Dávila, Lieven Vanhecke (2002)

Commentationes Mathematicae Universitatis Carolinae

We study the stability of the geodesic flow ξ as a critical point for the energy functional when the base space is a compact orientable quotient of a two-point homogeneous space.

Structure of geodesics in weakly symmetric Finsler metrics on H-type groups

Zdeněk Dušek (2020)

Archivum Mathematicum

Structure of geodesic graphs in special families of invariant weakly symmetric Finsler metrics on modified H-type groups is investigated. Geodesic graphs on modified H-type groups with the center of dimension 1 or 2 are constructed. The new patterns of algebraic complexity of geodesic graphs are observed.

Subriemannian geodesics of Carnot groups of step 3

Kanghai Tan, Xiaoping Yang (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In Carnot groups of step  ≤ 3, all subriemannian geodesics are proved to be normal. The proof is based on a reduction argument and the Goh condition for minimality of singular curves. The Goh condition is deduced from a reformulation and a calculus of the end-point mapping which boils down to the graded structures of Carnot groups.

Sub-Riemannian Metrics: Minimality of Abnormal Geodesics versus Subanalyticity

Andrei A. Agrachev, Andrei V. Sarychev (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study sub-Riemannian (Carnot-Caratheodory) metrics defined by noninvolutive distributions on real-analytic Riemannian manifolds. We establish a connection between regularity properties of these metrics and the lack of length minimizing abnormal geodesics. Utilizing the results of the previous study of abnormal length minimizers accomplished by the authors in [Annales IHP. Analyse nonlinéaire 13, p. 635-690] we describe in this paper two classes of the germs of distributions (called 2-generating...

Sub-Riemannian sphere in Martinet flat case

A. Agrachev, B. Bonnard, M. Chyba, I. Kupka (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This article deals with the local sub-Riemannian geometry on ℜ3, (D,g) where D is the distribution ker ω, ω being the Martinet one-form : dz - ½y2dxand g is a Riemannian metric on D. We prove that we can take g as a sum of squares adx2 + cd2. Then we analyze the flat case where a = c = 1. We parametrize the set of geodesics using elliptic integrals. This allows to compute the exponential mapping, the wave front, the conjugate and cut loci and the sub-Riemannian sphere. A direct consequence...

Currently displaying 1 – 20 of 31

Page 1 Next