Closed Curves and Geodesics with Two Self-Intersections on the Punctured Torus.
Page 1
D. Crisp, S. Dziadosz, D.J. Garity (1998)
Monatshefte für Mathematik
David Gurarie (1992/1993)
Séminaire de théorie spectrale et géométrie
Ionin, V.K. (2000)
Siberian Mathematical Journal
Victor Bangert (1980)
Mathematische Annalen
Wilhelm Klingenberg (1979)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Kellerhals, Ruth (2001)
Annales Academiae Scientiarum Fennicae. Mathematica
Alekseevsky, Dmitrii V., Nikonorov, Yurii G. (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Thórdur Jónsson (1982)
Mathematica Scandinavica
Yves Carrière, Luc Rozoy (1993/1994)
Séminaire de théorie spectrale et géométrie
Pierre Mounoud (2004)
Bulletin de la Société Mathématique de France
On étudie la complétude géodésique des flots nul-prégéodésiques sur les variétés lorentziennes compactes, ce qui donne une obstruction à être nul-géodésique. On montre que lorsque l’orthogonal du champ de vecteurs engendrant le flot considéré s’intègre en un feuilletage , la complétude du flot se lit sur l’holonomie de . On montre ainsi qu’il n’existe pas de flots nul-géodésiques lisses sur . On montre aussi qu’un -tore lorentzien est nul-complet si et seulement si ses feuilletages de type lumière...
de Fabritiis, Ch. (2003)
Advances in Geometry
Bernard Bonnard, Jean-Baptiste Caillau, Gabriel Janin (2013)
ESAIM: Control, Optimisation and Calculus of Variations
In a recent article [B. Bonnard, J.-B. Caillau, R. Sinclair and M. Tanaka, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 26 (2009) 1081–1098], we relate the computation of the conjugate and cut loci of a family of metrics on two-spheres of revolution whose polar form is g = dϕ2 + m(ϕ)dθ2 to the period mapping of the ϕ-variable. One purpose of this article is to use this relation to evaluate the cut and conjugate loci for a family of metrics arising as a deformation of the round sphere and to determine...
Karsten Grove, Stephen Halperin (1982)
Publications Mathématiques de l'IHÉS
Jian Song, Steve Zelditch (2007)
Annales de l’institut Fourier
The space of Kähler metrics in a fixed Kähler class on a projective Kähler manifold is an infinite dimensional symmetric space whose geodesics are solutions of a homogeneous complex Monge-Ampère equation in , where is an annulus. Phong-Sturm have proven that the Monge-Ampère geodesic of Kähler potentials of may be approximated in a weak sense by geodesics of the finite dimensional symmetric space of Bergman metrics of height . In this article we prove that in in the case of...
G.R. Burton (1977)
Monatshefte für Mathematik
Claire M. C. Baribaud (1996/1997)
Séminaire de théorie spectrale et géométrie
Mohammed Mostefa Mesmoudi (1996)
Revista Matemática Iberoamericana
A. J. Montesinos has shown that a geodesic correspondence between two complete Riemannian manifolds with transitive topological geodesic flow is a homothety. In this paper we prove a similar result for a conformal geodesic correspondence between two singular flat surfaces with conical singularities and negative concentrated curvature.
David D. Bleecker (1981)
Colloquium Mathematicae
Katsuhiro Shiohama (1985)
Commentarii mathematici Helvetici
Page 1