Page 1

Displaying 1 – 7 of 7

Showing per page

Quaternionic contact structures in dimension 7

David Duchemin (2006)

Annales de l’institut Fourier

The conformal infinity of a quaternionic-Kähler metric on a 4 n -manifold with boundary is a codimension 3 distribution on the boundary called quaternionic contact. In dimensions 4 n - 1 greater than 7 , a quaternionic contact structure is always the conformal infinity of a quaternionic-Kähler metric. On the contrary, in dimension 7 , we prove a criterion for quaternionic contact structures to be the conformal infinity of a quaternionic-Kähler metric. This allows us to find the quaternionic-contact structures...

Quaternionic geometry of matroids

Tamás Hausel (2005)

Open Mathematics

Building on a recent paper [8], here we argue that the combinatorics of matroids are intimately related to the geometry and topology of toric hyperkähler varieties. We show that just like toric varieties occupy a central role in Stanley’s proof for the necessity of McMullen’s conjecture (or g-inequalities) about the classification of face vectors of simplicial polytopes, the topology of toric hyperkähler varieties leads to new restrictions on face vectors of matroid complexes. Namely in this paper...

Quaternionic maps and minimal surfaces

Jingyi Chen, Jiayu Li (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let ( M , J α , α = 1 , 2 , 3 ) and ( N , 𝒥 α , α = 1 , 2 , 3 ) be hyperkähler manifolds. We study stationary quaternionic maps between M and N . We first show that if there are no holomorphic 2-spheres in the target then any sequence of stationary quaternionic maps with bounded energy subconverges to a stationary quaternionic map strongly in W 1 , 2 ( M , N ) . We then find that certain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last we construct a stationary quaternionic map with a codimension-3 singular set by using the embedded...

Currently displaying 1 – 7 of 7

Page 1