Hermitian metrics of semi-negative curvature on quotients of bounded symmetric domains.
In this paper, we consider several invariant complex structures on a compact real nilmanifold, and we study relations between invariant complex structures and Hodge numbers.
We study cohomologies and Hodge theory for complex manifolds with twisted differentials. In particular, we get another cohomological obstruction for manifolds in class C of Fujiki. We give a Hodgetheoretical proof of the characterization of solvmanifolds in class C of Fujiki, first stated by D. Arapura.
We describe invariant principal and Cartan connections on homogeneous principal bundles and show how to calculate the curvature and the holonomy; in the case of an invariant Cartan connection we give a formula for the infinitesimal automorphisms. The main result of this paper is that the above calculations are purely algorithmic. As an example of an homogeneous parabolic geometry we treat a conformal structure on the product of two spheres.
For each simple symplectic triple system over the real numbers, the standard enveloping Lie algebra and the algebra of inner derivations of the triple provide a reductive pair related to a semi-Riemannian homogeneous manifold. It is proved that this is an Einstein manifold.
A Stiefel manifold is the set of orthonormal -frames in , and it is diffeomorphic to the homogeneous space . We study -invariant Einstein metrics on this space. We determine when the standard metric on is Einstein, and we give an explicit solution to the Einstein equation for the space .
For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections...
O. Kowalski and J. Szenthe [KS] proved that every homogeneous Riemannian manifold admits at least one homogeneous geodesic, i.eȯne geodesic which is an orbit of a one-parameter group of isometries. In [KNV] the related two problems were studied and a negative answer was given to both ones: (1) Let be a homogeneous Riemannian manifold where is the largest connected group of isometries and . Does always admit more than one homogeneous geodesic? (2) Suppose that admits linearly independent...
A flat affine manifold is said to Hessian if it is endowed with a Riemannian metric whose local expression has the form where is a -function and is an affine local coordinate system. Let be a Hessian manifold. We show that if is homogeneous, the universal covering manifold of is a convex domain in and admits a uniquely determined fibering, whose base space is a homogeneous convex domain not containing any full straight line, and whose fiber is an affine subspace of .
The homogeneous quaternionic Kähler structures on the Alekseevskian 𝒲-spaces with their natural quaternionic structures, each of these spaces described as a solvable Lie group, and the type of such structures in Fino's classification, are found.
The existence of a homogeneous geodesic in homogeneous Finsler manifolds was investigated and positively answered in previous papers. It is conjectured that this result can be improved, namely that any homogeneous Finsler manifold admits at least two homogenous geodesics. Examples of homogeneous Randers manifolds admitting just two homogeneous geodesics are presented.
We describe homogeneous manifolds with generic Ricci tensor. We also prove that if 𝔤 is a 4-dimensional unimodular Lie algebra such that dim[𝔤,𝔤] ≤ 2 then every left-invariant metric on the Lie group G with Lie algebra 𝔤 admits two mutually opposite compatible left-invariant almost Kähler structures.