Natural intrinsic geometrical symmetries.
We prove a vanishing theorem for the cohomology of the complement of a complex hyperplane arrangement with coefficients in a complex local system. This result is compared with other vanishing theorems, and used to study Milnor fibers of line arrangements, and hypersurface arrangements.
In this article, we summarize the results on symmetric conformal geometries. We review the results following from the general theory of symmetric parabolic geometries and prove several new results for symmetric conformal geometries. In particular, we show that each symmetric conformal geometry is either locally flat or covered by a pseudo-Riemannian symmetric space, where the covering is a conformal map. We construct examples of locally flat symmetric conformal geometries that are not pseudo-Riemannian...
Dans cet article, en utilisant les algèbres de Jordan euclidiennes, nous étudions l’espace de Hardy d’un espace symétrique de type Cayley . Nous montrons que le noyau de Cauchy-Szegö de s’exprime comme somme d’une série faisant intervenir la fonction de Harish-Chandra de l’espace symétrique riemannien , la fonction de l’espace symétrique -dual de et les fonctions sphériques de l’espace symétrique ordonné . Nous établissons, dans le cas où la dimension de l’algèbre de Jordan associée...