Scattering matrices and scattering geodesics of locally symmetric spaces
Soit une algèbre de Jordan simple euclidienne de dimension finie et le cône symétrique associé. Nous étudions dans cet article le semi-groupe , naturellement associé à , formé des automorphismes holomorphes du domaine tube qui appliquent le cône dans lui-même.
We determine explicitly the local structure of a semi-symmetric -space.
The remarkable development of the theory of smooth quasigroups is surveyed.
In this paper, we explicitly determine the spectrum of Dirac operators acting on smooth sections of twisted spinor bundles over the complex projective space for .
We define on an ordered semi simple symmetric space a family of spherical functions by an integral formula similar to the Harish-Chandra integral formula for spherical functions on a Riemannian symmetric space of non compact type. Associated with these spherical functions we define a spherical Laplace transform. This transform carries the composition product of invariant causal kernels onto the ordinary product. We invert this transform when is a complex group, a real form of , and when ...