Constant mean curvature hypersurfaces with constant -invariant.
2000 Mathematics Subject Classification: 53C15, 53C42.In this paper, we research some fundamental properties of contact CR-Submanifolds of a Kenmotsu manifold. We show that the anti-invariant distribution is always integrable and give a necessary and sufficient condition for the invariant distribution to be integrable. After then, properties of the induced structures on submanifold by almost contact metric structure on the ambient manifold are categorized. Finally, we give some results for contact...
The purpose of this paper is to study contact CR-submanifolds with nonvanishing parallel mean curvature vector immersed in a Sasakian space form. In §1 we state general formulas on contact CR-submanifolds of a Sasakian manifold, especially those of a Sasakian space form. §2 is devoted to the study of contact CR-submanifolds with nonvanishing parallel mean curvature vector and parallel f-structure in the normal bundle immersed in a Sasakian space form. Moreover, we suppose that the second fundamental...
We study contact normal submanifolds and contact generic normal in Kenmotsu manifolds and in Kenmotsu space forms. Submanifolds mentioned above with certain conditions in forms space Kenmotsu are shown that they CR-manifolds, spaces of constant curvature, locally symmetric and Einsteinnian. Also, the non-existence of totally umbilical submanifolds in a Kenmotsu space form -1 is proven under a certain condition.
The aim of this paper is to investigate n-dimensional real submanifolds of complex manifolds in the case when the maximal holomorphic tangent space is (n-1)-dimensional. In particular, we give some examples and we consider the Levi form on these submanifolds, especially when the ambient space is a complex space form. Moreover, we show that on some remarkable class of real hypersurfaces of complex space forms, the Levi form cannot vanish identically.
We consider a Riemannian submersion π: M → N, where M is a CR-submanifold of a locally conformal Kaehler manifold L with the Lee form ω which is strongly non-Kaehler and N is an almost Hermitian manifold. First, we study some geometric structures of N and the relation between the holomorphic sectional curvatures of L and N. Next, we consider the leaves M of the foliation given by ω = 0 and give a necessary and sufficient condition for M to be a Sasakian manifold.