Formal deformations of symplectic manifolds with boundary.
Ryszard Nest, Boris Tsygan (1996)
Journal für die reine und angewandte Mathematik
Paul-Émile Paradan (2009)
Annales de l’institut Fourier
Let be a compact Lie group acting in a Hamiltonian way on a symplectic manifold which is pre-quantized by a Kostant-Souriau line bundle. We suppose here that the moment map is proper so that the reduced space is compact for all . Then, we can define the “formal geometric quantization” of asThe aim of this article is to study the functorial properties of the assignment .
Ershov, Yu.V., Yakovlev, E.I. (2008)
Sibirskij Matematicheskij Zhurnal
V. Guillemin, S. Sternberg (1982)
Inventiones mathematicae
Viktor Ginzburg, Richard Montgomery (2000)
Banach Center Publications
A geometric quantization of a Kähler manifold, viewed as a symplectic manifold, depends on the complex structure compatible with the symplectic form. The quantizations form a vector bundle over the space of such complex structures. Having a canonical quantization would amount to finding a natural (projectively) flat connection on this vector bundle. We prove that for a broad class of manifolds, including symplectic homogeneous spaces (e.g., the sphere), such connection does not exist. This is a...
Mark D. Hamilton, Eva Miranda (2010)
Annales de l’institut Fourier
We construct the geometric quantization of a compact surface using a singular real polarization coming from an integrable system. Such a polarization always has singularities, which we assume to be of nondegenerate type. In particular, we compute the effect of hyperbolic singularities, which make an infinite-dimensional contribution to the quantization, thus showing that this quantization depends strongly on polarization.
Izu Vaisman (1983)
Monatshefte für Mathematik
Theodor Liebisch (1881)
Maciej Horowski, Anatol Odzijewicz (1993)
Annales de l'I.H.P. Physique théorique
J.-E. Werth (1982)
Annales de l'I.H.P. Physique théorique
Eva Miranda (2014)
Open Mathematics
The main purpose of this paper is to present in a unified approach to different results concerning group actions and integrable systems in symplectic, Poisson and contact manifolds. Rigidity problems for integrable systems in these manifolds will be explored from this perspective.
San Vũ Ngọc (2000/2001)
Séminaire Équations aux dérivées partielles
On définit les notions de feuilletages classiques et semi-classiques pour les systèmes complètement intégrables avec singularités. Les résultats de classification standard (telles les coordonnées actions-angles semi-classiques) sont rappelés. Le cas du feuilletage classique de type foyer-foyer est examiné en détail, où des nouveaux invariants semi-globaux apparaissent. Ces invariants sont identifiés dans les conditions de Bohr-Sommerfeld singulières qui donnent le spectre conjoint au voisinage d’une...
František Hromádko (1882)
Časopis pro pěstování mathematiky a fysiky
Patrick Iglesias (1995)
Annales de l'institut Fourier
A toute deux-forme fermée, sur une variété connexe, on associe une famille d’extensions centrales du groupe de ses automorphismes par son tore des périodes. On discute ensuite quelques propriétés de cette construction.
H. Hofer, Y. Eliashberg, D. Salamon (1995)
Geometric and functional analysis
D. Borthwick, T. Paul, A. Uribe (1995)
Inventiones mathematicae
Vaisman, Izu (1985)
International Journal of Mathematics and Mathematical Sciences
Joseph Dongho (2012)
Annales de la faculté des sciences de Toulouse Mathématiques
In this paper we introduce the notions of logarithmic Poisson structure and logarithmic principal Poisson structure. We prove that the latter induces a representation by logarithmic derivation of the module of logarithmic Kähler differentials. Therefore it induces a differential complex from which we derive the notion of logarithmic Poisson cohomology. We prove that Poisson cohomology and logarithmic Poisson cohomology are equal when the Poisson structure is log symplectic. We give an example of...
André Unterberger (1993)
Bulletin de la Société Mathématique de France
Maurice De Gosson (1990)
Annales de l'institut Fourier
We use the properties of to construct functions associated with the elements of the lagrangian grassmannian (n) which generalize the Maslov index on Mp(n) defined by J. Leray in his “Lagrangian Analysis”. We deduce from these constructions the identity between and a subset of , equipped with appropriate algebraic and topological structures.