Displaying 61 – 80 of 83

Showing per page

Symplectic Capacities in Manifolds

Alfred Künzle (1997)

Banach Center Publications

Symplectic capacities coinciding on convex sets in the standard symplectic vector space are extended to any subsets of symplectic manifolds. It is shown that, using embeddings of non-smooth convex sets and a product formula, calculations of some capacities become very simple. Moreover, it is proved that there exist such capacities which are distinct and that there are star-shaped domains diffeomorphic to the ball but not symplectomorphic to any convex set.

Symplectic connections with parallel Ricci tensor

Michel Cahen, Simone Gutt, John Rawnsley (2000)

Banach Center Publications

A variational principle introduced to select some symplectic connections leads to field equations which, in the case of the Levi Civita connection of Kähler manifolds, are equivalent to the condition that the Ricci tensor is parallel. This condition, which is stronger than the field equations, is studied in a purely symplectic framework.

Symplectic involutions on deformations of K3[2]

Giovanni Mongardi (2012)

Open Mathematics

Let X be a hyperkähler manifold deformation equivalent to the Hilbert square of a K3 surface and let φ be an involution preserving the symplectic form. We prove that the fixed locus of φ consists of 28 isolated points and one K3 surface, and moreover that the anti-invariant lattice of the induced involution on H 2(X, ℤ) is isomorphic to E 8(−2). Finally we show that any couple consisting of one such manifold and a symplectic involution on it can be deformed into a couple consisting of the Hilbert...

Symplectic Killing spinors

Svatopluk Krýsl (2012)

Commentationes Mathematicae Universitatis Carolinae

Let ( M , ω ) be a symplectic manifold admitting a metaplectic structure (a symplectic analogue of the Riemannian spin structure) and a torsion-free symplectic connection . Symplectic Killing spinor fields for this structure are sections of the symplectic spinor bundle satisfying a certain first order partial differential equation and they are the main object of this paper. We derive a necessary condition which has to be satisfied by a symplectic Killing spinor field. Using this condition one may easily...

Symplectic spinor valued forms and invariant operators acting between them

Svatopluk Krýsl (2006)

Archivum Mathematicum

Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described.

Symplectic torus actions with coisotropic principal orbits

Johannes Jisse Duistermaat, Alvaro Pelayo (2007)

Annales de l’institut Fourier

In this paper we completely classify symplectic actions of a torus T on a compact connected symplectic manifold ( M , σ ) when some, hence every, principal orbit is a coisotropic submanifold of ( M , σ ) . That is, we construct an explicit model, defined in terms of certain invariants, of the manifold, the torus action and the symplectic form. The invariants are invariants of the topology of the manifold, of the torus action, or of the symplectic form.In order to deal with symplectic actions which are not Hamiltonian,...

Symplectic twistor operator and its solution space on 2

Marie Dostálová, Petr Somberg (2013)

Archivum Mathematicum

We introduce the symplectic twistor operator T s in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension 1. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on 2 .

Currently displaying 61 – 80 of 83