Displaying 101 – 120 of 790

Showing per page

Canonical Poisson-Nijenhuis structures on higher order tangent bundles

P. M. Kouotchop Wamba (2014)

Annales Polonici Mathematici

Let M be a smooth manifold of dimension m>0, and denote by S c a n the canonical Nijenhuis tensor on TM. Let Π be a Poisson bivector on M and Π T the complete lift of Π on TM. In a previous paper, we have shown that ( T M , Π T , S c a n ) is a Poisson-Nijenhuis manifold. Recently, the higher order tangent lifts of Poisson manifolds from M to T r M have been studied and some properties were given. Furthermore, the canonical Nijenhuis tensors on T A M are described by A. Cabras and I. Kolář [Arch. Math. (Brno) 38 (2002), 243-257],...

Canonical symplectic structures on the r-th order tangent bundle of a symplectic manifold.

Jan Kurek, Wlodzimierz M. Mikulski (2006)

Extracta Mathematicae

We describe all canonical 2-forms Λ(ω) on the r-th order tangent bundle TrM = Jr0 (R;M) of a symplectic manifold (M, ω). As a corollary we deduce that all canonical symplectic structures Λ(ω) on TrM over a symplectic manifold (M, ω) are of the form Λ(ω) = Σrk=0 αkω(k) for all real numbers αk with αr ≠ 0, where ω(k) is the (k)-lift (in the sense of A. Morimoto) of ω to TrM.

Certain contact metrics satisfying the Miao-Tam critical condition

Dhriti Sundar Patra, Amalendu Ghosh (2016)

Annales Polonici Mathematici

We study certain contact metrics satisfying the Miao-Tam critical condition. First, we prove that a complete K-contact metric satisfying the Miao-Tam critical condition is isometric to the unit sphere S 2 n + 1 . Next, we study (κ,μ)-contact metrics satisfying the Miao-Tam critical condition.

Characterization of diffeomorphisms that are symplectomorphisms

Stanisław Janeczko, Zbigniew Jelonek (2009)

Fundamenta Mathematicae

Let ( X , ω X ) and ( Y , ω Y ) be compact symplectic manifolds (resp. symplectic manifolds) of dimension 2n > 2. Fix 0 < s < n (resp. 0 < k ≤ n) and assume that a diffeomorphism Φ : X → Y maps all 2s-dimensional symplectic submanifolds of X to symplectic submanifolds of Y (resp. all isotropic k-dimensional tori of X to isotropic tori of Y). We prove that in both cases Φ is a conformal symplectomorphism, i.e., there is a constant c ≠0 such that Φ * ω Y = c ω X .

Classification analytique de structures de Poisson

Philipp Lohrmann (2009)

Bulletin de la Société Mathématique de France

Notre étude porte sur une catégorie de structures de Poisson singulières holomorphes au voisinage de 0 n et admettant une forme normale formelle polynomiale i.e. un nombre fini d’invariants formels. Les séries normalisantes sont divergentes en général. On montre l’existence de transformations normalisantes holomorphes sur des domaines sectoriels de la forme a &lt; arg x R &lt; b , où x R est un monôme associé au problème. Il suit une classification analytique.

Classifications of star products and deformations of Poisson brackets

Philippe Bonneau (2000)

Banach Center Publications

On the algebra of functions on a symplectic manifold we consider the pointwise product and the Poisson bracket; after a brief review of the classifications of the deformations of these structures, we give explicit formulas relating a star product to its classifying formal Poisson bivector.

Cluster ensembles, quantization and the dilogarithm

Vladimir V. Fock, Alexander B. Goncharov (2009)

Annales scientifiques de l'École Normale Supérieure

A cluster ensemble is a pair ( 𝒳 , 𝒜 ) of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group Γ . The space 𝒜 is closely related to the spectrum of a cluster algebra [12]. The two spaces are related by a morphism p : 𝒜 𝒳 . The space 𝒜 is equipped with a closed 2 -form, possibly degenerate, and the space 𝒳 has a Poisson structure. The map p is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central role...

Currently displaying 101 – 120 of 790