Some questions on the composition factor property for atomic mappings.
The following known selection theorem is sharpened, primarily, by weakening the hypothesis that all the sets φ(x) are closed in Y: Let X be paracompact with dimX = 0, let Y be completely metrizable and let φ:X → 𝓕(Y) be l.s.c. Then φ has a selection.
Paracompactness (-paracompactness) and normality of a subspace in a space defined by Arhangel’skii and Genedi [4] are fundamental in the study of relative topological properties ([2], [3]). These notions have been investigated by primary using of the notion of weak - or weak -embeddings, which are extension properties of functions defined in [2] or [18]. In fact, Bella and Yaschenko [8] characterized Tychonoff spaces which are normal in every larger Tychonoff space, and this result is essentially...
If p ∈ Rn, then we have the radial projection map from Rn {p} onto a sphere. Sometimes one can construct similar mappings on metric spaces even when the space is nontrivially different from Euclidean space, so that the existence of such a mapping becomes a sign of approximately Euclidean geometry. The existence of such spherical mappings can be used to derive estimates for the values of a function in terms of its gradient, which can then be used to derive Sobolev inequalities, etc. In this paper...
This note aims at providing some information about the concept of a strongly proximal compact transformation semigroup. In the affine case, a unified approach to some known results is given. It is also pointed out that a compact flow (X,𝓢) is strongly proximal if (and only if) it is proximal and every point of X has an 𝓢-strongly proximal neighborhood in X. An essential ingredient, in the affine as well as in the nonaffine case, turns out to be the existence of a unique minimal subset.