-(-) пары расширений минимальных полугрупп преобразований
We introduce the properties of a space to be strictly or strictly , where , and we analyze them and other generalizations of -sequentiality () in Function Spaces, such as Kombarov’s weakly and strongly -sequentiality, and Kocinac’s and -properties. We characterize these in in terms of cover-properties in ; and we prove that weak -sequentiality is equivalent to -property, where and , in the class of spaces which are -compact for every ; and that is a -space iff satisfies...
We prove that if the topology on the set Seq of all finite sequences of natural numbers is determined by -filters and λ ≤ , then Seq is a -set in its Čech-Stone compactification. This improves some results of Simon and of Juhász and Szymański. As a corollary we obtain a generalization of a result of Burke concerning skeletal maps and we partially answer a question of his.
In this paper the concept of fuzzy connectedness between fuzzy sets is generalized to fuzzy bitopological spaces and some of its properties are studied.
In this paper the concepts of fuzzy irresolute and fuzzy presemiopen mappings due to Yalvac [12] are generalized to fuzzy bitopological spaces and their basic properties and characterizations are studied.
We introduce and study the notion of pairwise monotonically normal space as a bitopological extension of the monotonically normal spaces of Heath, Lutzer and Zenor. In particular, we characterize those spaces by using a mixed condition of insertion and extension of real-valued functions. This result generalizes, at the same time improves, a well-known theorem of Heath, Lutzer and Zenor. We also obtain some solutions to the quasi-metrization problem in terms of the pairwise monotone normality.
In this paper, we introduce and investigate the notion of weakly Hausdorffness in bitopological spaces by using the convergent of nets. Several characterizations of this notion are given. Some relationships between these spaces and other spaces satisfying some separation axioms are studied.