A 3-dimensional absolute retract which does not contain any disk
In this paper we generalize the notion of perfect compactification of a Tychonoff space to a generic extension of any space by introducing the concept of perfect pair. This allow us to simplify the treatment in a basic way and in a more general setting. Some [S], [S], and [D]’s results are improved and new characterizations for perfect (Hausdorff) extensions of spaces are obtained.
The paper contains a fixed point theorem for stable mappings in metric discus spaces (Theorem 10). A consequence is Theorem 11 which is a far-reaching extension of the fundamental result of Browder, Göhde and Kirk for non-expansive mappings.
A metric space (X,d) is monotone if there is a linear order < on X and a constant c such that d(x,y) ≤ cd(x,z) for all x < y < z in X, and σ-monotone if it is a countable union of monotone subspaces. A planar set homeomorphic to the Cantor set that is not σ-monotone is constructed and investigated. It follows that there is a metric on a Cantor set that is not σ-monotone. This answers a question raised by the second author.
Given an axiomatic account of the category of locales the closed subgroup theorem is proved. The theorem is seen as a consequence of a categorical account of the Hofmann-Mislove theorem. The categorical account has an order dual providing a new result for locale theory: every compact subgroup is necessarily fitted.
We introduce the concept of firm classes of morphisms as basis for the axiomatic study of completions of objects in arbitrary categories. Results on objects injective with respect to given morphism classes are included. In a finitely well-complete category, firm classes are precisely the coessential first factors of morphism factorization structures.
Ψ-density point of a Lebesgue measurable set was introduced by Taylor in [Taylor S.J., On strengthening the Lebesgue Density Theorem, Fund. Math., 1958, 46, 305–315] and [Taylor S.J., An alternative form of Egoroff’s theorem, Fund. Math., 1960, 48, 169–174] as an answer to a problem posed by Ulam. We present a category analogue of the notion and of the Ψ-density topology. We define a category analogue of the Ψ-density point of the set A at a point x as the Ψ-density point at x of the regular open...
A nontrivial surjective Čech closure function is constructed in ZFC.