on spaces of homogeneous type: a density result on - spaces.
We consider various collections of functions from the Baire space into itself naturally arising in (effective) descriptive set theory and general topology, including computable (equivalently, recursive) functions, contraction mappings, and functions which are nonexpansive or Lipschitz with respect to suitable complete ultrametrics on (compatible with its standard topology). We analyze the degree-structures induced by such sets of functions when used as reducibility notions between subsets of...
The aim of this manuscript is to determine the relative size of several functions (copulas, quasi– copulas) that are commonly used in stochastic modeling. It is shown that the class of all quasi–copulas that are (locally) associated to a doubly stochastic signed measure is a set of first category in the class of all quasi– copulas. Moreover, it is proved that copulas are nowhere dense in the class of quasi-copulas. The results are obtained via a checkerboard approximation of quasi–copulas.
We investigate Baire classes of strongly affine mappings with values in Fréchet spaces. We show, in particular, that the validity of the vector-valued Mokobodzki result on affine functions of the first Baire class is related to the approximation property of the range space. We further extend several results known for scalar functions on Choquet simplices or on dual balls of L₁-preduals to the vector-valued case. This concerns, in particular, affine classes of strongly affine Baire mappings, the...
We characterize Baire-like spaces Cc(X,E) of continuous functions defined on a locally compact and Hewitt space X into a locally convex space E endowed with the compact-open topology.
We show that if is a subspace of a linearly ordered space, then is a Baire space if and only if is Choquet iff has the Moving Off Property.
We investigate Baire-one functions whose graph is contained in the graph of a usco mapping. We prove in particular that such a function defined on a metric space with values in is the pointwise limit of a sequence of continuous functions with graphs contained in the graph of a common usco map.