Bounded solutions for fuzzy integral equations.
A constructively valid counterpart to Bourbaki’s Fixpoint Lemma for chain-complete partially ordered sets is presented to obtain a condition for one closure system in a complete lattice to be stable under another closure operator of . This is then used to deal with coproducts and other aspects of frames.
In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of εn. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the notion of a bounded simplicial complex and the diameter of a bounded simplicial complex. We also prove...
In this article we prove the Brouwer fixed point theorem for an arbitrary convex compact subset of εn with a non empty interior. This article is based on [15].
In this article we focus on a special case of the Brouwer invariance of domain theorem. Let us A, B be a subsets of εn, and f : A → B be a homeomorphic. We prove that, if A is closed then f transform the boundary of A to the boundary of B; and if B is closed then f transform the interior of A to the interior of B. These two cases are sufficient to prove the topological invariance of dimension, which is used to prove basic properties of the n-dimensional manifolds, and also to prove basic properties...