On the theorems of Y. Mibu and G. Debs on separate continuity.
Given a finite family of cliquish functions, , we can find a Lebesgue function such that is Darboux and quasi-continuous for every . This theorem is a generalization both of the theorem by H. W. Pu H. H. Pu and of the theorem by Z. Grande.
In this paper we introduce two classes of functions called weakly preopen and weakly preclosed functions as generalization of weak openness and weak closedness due to [26] and [27] respectively. We obtain their characterizations, their basic properties and their relationshisps with other types of functions between topological spaces.
A function f: X → Y between topological spaces is said to be a weakly Gibson function if for any open connected set U ⊆ X. We prove that if X is a locally connected hereditarily Baire space and Y is a T₁-space then an -measurable mapping f: X → Y is weakly Gibson if and only if for any connected set C ⊆ X with dense connected interior the image f(C) is connected. Moreover, we show that each weakly Gibson -measurable mapping f: ℝⁿ → Y, where Y is a T₁-space, has a connected graph.
Classes of functions continuous in various senses, in particular -continuous, -continuous, feeblz continuous a.o., and relations between the classes, are studied.
In this paper, we further the study of -compactness a generalization of quasi-H-closed sets and its applications to some forms of continuity using -open and -open sets. Among other results, it is shown a weakly -retract of a Hausdorff space is a -closed subset of .
We prove that the semigroup operation of a topological semigroup extends to a continuous semigroup operation on its Stone-Čech compactification provided is a pseudocompact openly factorizable space, which means that each map to a second countable space can be written as the composition of an open map onto a second countable space and a map . We present a spectral characterization of openly factorizable spaces and establish some properties of such spaces.
Let C(f), Q(f), E(f) and A(f) be the sets of all continuity, quasicontinuity, upper and lower quasicontinuity and cliquishness points of a real function f: X → ℝ, respectively. The triplets (C(f),Q(f),A(f)), (C(f),E(f),A(f) and (Q(f),E(f),A(f)are characterized for functions defined on Baire metric spaces without isolated points.