Functions with preclosed graphs.
Some relationships between -sequence-covering maps and weak-open maps or sequence-covering -maps are discussed. These results are used to generalize a result from Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301–314.
In this paper, we prove that a space is a -metrizable space if and only if is a weak-open, and -image of a semi-metric space, if and only if is a strong sequence-covering, quotient, and -image of a semi-metric space, where “semi-metric” can not be replaced by “metric”.
For a topological space let be the set of all compact subsets of . The purpose of this paper is to characterize Lindelöf Čech-complete spaces by means of the sets . Similar characterizations also hold for Lindelöf locally compact , as well as for countably -determined spaces . Our results extend a classical result of J. Christensen.
The notion of a Hausdorff function is generalized to the concept of H-closed function and the concept of an H-closed extension of a Hausdorff function is developed. Each Hausdorff function is shown to have an H-closed extension.
We study when a topological space has a weaker connected topology. Various sufficient and necessary conditions are given for a space to have a weaker Hausdorff or regular connected topology. It is proved that the property of a space of having a weaker Tychonoff topology is preserved by any of the free topological group functors. Examples are given for non-preservation of this property by “nice” continuous mappings. The requirement that a space have a weaker Tychonoff connected topology is rather...
Given a metric continuum and a positive integer , denotes the hyperspace of all nonempty subsets of with at most points endowed with the Hausdorff metric. For , denotes the set of elements of containing and denotes the quotient space obtained from by shrinking to one point set. Given a map between continua, denotes the induced map defined by . Let , we shall consider the induced map in the natural way . In this paper we consider the maps , , for some and for...