Continuous selections on spaces of continuous functions
For a space , we denote by , and the hyperspaces of non-empty closed, compact, and subsets of cardinality of , respectively, with their Vietoris topology. For spaces and , is the space of continuous functions from to with its pointwise convergence topology. We analyze in this article when , and have continuous selections for a space of the form , where is zero-dimensional and is a strongly zero-dimensional metrizable space. We prove that is weakly orderable if and...