Displaying 241 – 260 of 1977

Showing per page

Almost g ˜ α -closed functions and separation axioms

O. Ravi, S. Ganesan, R. Latha (2012)

Mathematica Bohemica

We introduce a new class of functions called almost g ˜ α -closed and use the functions to improve several preservation theorems of normality and regularity and also their generalizations. The main result of the paper is that normality and weak normality are preserved under almost g ˜ α -closed continuous surjections.

Almost maximal topologies on groups

Yevhen Zelenyuk (2016)

Fundamenta Mathematicae

Let G be a countably infinite group. We show that for every finite absolute coretract S, there is a regular left invariant topology on G whose ultrafilter semigroup is isomorphic to S. As consequences we prove that (1) there is a right maximal idempotent in βG∖G which is not strongly right maximal, and (2) for each combination of the properties of being extremally disconnected, irresolvable, and nodec, except for the combination (-,-,+), there is a corresponding regular almost maximal left invariant...

Almost * realcompactness

John J. Schommer, Mary Anne Swardson (2001)

Commentationes Mathematicae Universitatis Carolinae

We provide a new generalization of realcompactness based on ultrafilters of cozero sets and contrast it with almost realcompactness.

An Example Concerning Valdivia Compact Spaces

Kalenda, Ondrej (1999)

Serdica Mathematical Journal

∗ Supported by Research grants GAUK 190/96 and GAUK 1/1998We prove that the dual unit ball of the space C0 [0, ω1 ) endowed with the weak* topology is not a Valdivia compact. This answers a question posed to the author by V. Zizler and has several consequences. Namely, it yields an example of an affine continuous image of a convex Valdivia compact (in the weak* topology of a dual Banach space) which is not Valdivia, and shows that the property of the dual unit ball being Valdivia is not an isomorphic...

An independency result in connectification theory

Alessandro Fedeli, Attilio Le Donne (1999)

Commentationes Mathematicae Universitatis Carolinae

A space is called connectifiable if it can be densely embedded in a connected Hausdorff space. Let ψ be the following statement: “a perfect T 3 -space X with no more than 2 𝔠 clopen subsets is connectifiable if and only if no proper nonempty clopen subset of X is feebly compact". In this note we show that neither ψ nor ¬ ψ is provable in ZFC.

An interesting class of ideals in subalgebras of C ( X ) containing C * ( X )

Sudip Kumar Acharyya, Dibyendu De (2007)

Commentationes Mathematicae Universitatis Carolinae

In the present paper we give a duality between a special type of ideals of subalgebras of C ( X ) containing C * ( X ) and z -filters of β X by generalization of the notion z -ideal of C ( X ) . We also use it to establish some intersecting properties of prime ideals lying between C * ( X ) and C ( X ) . For instance we may mention that such an ideal becomes prime if and only if it contains a prime ideal. Another interesting one is that for such an ideal the residue class ring is totally ordered if and only if it is prime.

Currently displaying 241 – 260 of 1977