On a problem of Tamano
In this short article we answer the question posed in Ghadermazi M., Karamzadeh O.A.S., Namdari M., On the functionally countable subalgebra of , Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. It is shown that is isomorphic to some ring of continuous functions if and only if is functionally countable. For a strongly zero-dimensional space , this is equivalent to say that is functionally countable. Hence for every -space it is equivalent to pseudo--compactness.
Blum and Swaminathan [Pacific J. Math. 93 (1981), 251–260] introduced the notion of -fixedness for set-valued mappings, and characterized realcompactness by means of continuous selections for Tychonoff spaces of non-measurable cardinal. Using their method, we obtain another characterization of realcompactness, but without any cardinal assumption. We also characterize Dieudonné completeness and Lindelöf property in similar formulations.
A well known theorem of W.W. Comfort and K.A. Ross, stating that every pseudocompact group is -embedded in its Weil completion [5] (which is a compact group), is extended to some new classes of topological groups, and the proofs are very transparent, short and elementary (the key role in the proofs belongs to Lemmas 1.1 and 4.1). In particular, we introduce a new notion of canonical uniform tightness of a topological group and prove that every -dense subspace of a topological group , such...
A function is said to be almost quasicontinuous at if for each neighbourhood of . Some properties of these functions are investigated.
In this paper, we give an affirmative answer to the problem posed by Y. Tanaka and Y. Ge (2006) in "Around quotient compact images of metric spaces, and symmetric spaces", Houston J. Math. 32 (2006) no. 1, 99-117.
The definitions of AP and WAP were originated in categorical topology by A. Pultr and A. Tozzi, Equationally closed subframes and representation of quotient spaces, Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 167-183. In general, we have the implications: , where is defined as the property that every compact subset is closed and is defined as the property that every convergent sequence has at most one limit. And a space is called submaximal if every dense subset is open....