Displaying 761 – 780 of 1977

Showing per page

Locally realcompact and HN-complete spaces

David Buhagiar, Emmanuel Chetcuti (2007)

Commentationes Mathematicae Universitatis Carolinae

Two classes of spaces are studied, namely locally realcompact spaces and HN-complete spaces, where the latter class is introduced in the paper. Both of these classes are superclasses of the class of realcompact spaces. Invariance with respect to subspaces and products of these spaces are investigated. It is shown that these two classes can be characterized by demanding that certain equivalences hold between certain classes of Baire measures or by demanding that certain classes of Baire measures...

Locallyn-Connected Compacta and UV n -Maps

V. Valov (2015)

Analysis and Geometry in Metric Spaces

We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system S = {Xα , pβ α , α < β < τ} consisting of compact metrizable LCn-spaces Xα such that all bonding...

Lonely points revisited

Jonathan L. Verner (2013)

Commentationes Mathematicae Universitatis Carolinae

In our previous paper, we introduced the notion of a lonely point, due to P. Simon. A point p X is lonely if it is a limit point of a countable dense-in-itself set, it is not a limit point of a countable discrete set and all countable sets whose limit point it is form a filter. We use the space 𝒢 ω from a paper of A. Dow, A.V. Gubbi and A. Szymański [Rigid Stone spaces within ZFC, Proc. Amer. Math. Soc. 102 (1988), no. 3, 745–748] to construct lonely points in ω * . This answers the question of P. Simon...

Longer chains of idempotents in βG

Neil Hindman, Dona Strauss, Yevhen Zelenyuk (2013)

Fundamenta Mathematicae

Given idempotents e and f in a semigroup, e ≤ f if and only if e = fe = ef. We show that if G is a countable discrete group, p is a right cancelable element of G* = βG∖G, and λ is a countable ordinal, then there is a strictly decreasing chain q σ σ < λ of idempotents in C p , the smallest compact subsemigroup of G* with p as a member. We also show that if S is any infinite subsemigroup of a countable group, then any nonminimal idempotent in S* is the largest element of such a strictly decreasing chain of idempotents....

Lower bound and upper bound of operators on block weighted sequence spaces

Rahmatollah Lashkaripour, Gholomraza Talebi (2012)

Czechoslovak Mathematical Journal

Let A = ( a n , k ) n , k 1 be a non-negative matrix. Denote by L v , p , q , F ( A ) the supremum of those L that satisfy the inequality A x v , q , F L x v , p , F , where x 0 and x l p ( v , F ) and also v = ( v n ) n = 1 is an increasing, non-negative sequence of real numbers. If p = q , we use L v , p , F ( A ) instead of L v , p , p , F ( A ) . In this paper we obtain a Hardy type formula for L v , p , q , F ( H μ ) , where H μ is a Hausdorff matrix and 0 < q p 1 . Another purpose of this paper is to establish a lower bound for A W N M v , p , F , where A W N M is the Nörlund matrix associated with the sequence W = { w n } n = 1 and 1 < p < . Our results generalize some works of Bennett, Jameson and present authors....

LΣ(≤ ω)-spaces and spaces of continuous functions

Israel Lara, Oleg Okunev (2010)

Open Mathematics

We present a few results and problems related to spaces of continuous functions with the topology of pointwise convergence and the classes of LΣ(≤ ω)-spaces; in particular, we prove that every Gul’ko compact space of cardinality less or equal to 𝔠 is an LΣ(≤ ω)-space.

Mapping theorems on countable tightness and a question of F. Siwiec

Shou Lin, Jinhuang Zhang (2014)

Commentationes Mathematicae Universitatis Carolinae

In this paper s s -quotient maps and s s q -spaces are introduced. It is shown that (1) countable tightness is characterized by s s -quotient maps and quotient maps; (2) a space has countable tightness if and only if it is a countably bi-quotient image of a locally countable space, which gives an answer for a question posed by F. Siwiec in 1975; (3) s s q -spaces are characterized as the s s -quotient images of metric spaces; (4) assuming 2 ω < 2 ω 1 , a compact T 2 -space is an s s q -space if and only if every countably compact subset...

Martin’s Axiom and ω -resolvability of Baire spaces

Fidel Casarrubias-Segura, Fernando Hernández-Hernández, Angel Tamariz-Mascarúa (2010)

Commentationes Mathematicae Universitatis Carolinae

We prove that, assuming MA, every crowded T 0 space X is ω -resolvable if it satisfies one of the following properties: (1) it contains a π -network of cardinality < 𝔠 constituted by infinite sets, (2) χ ( X ) < 𝔠 , (3) X is a T 2 Baire space and c ( X ) 0 and (4) X is a T 1 Baire space and has a network 𝒩 with cardinality < 𝔠 and such that the collection of the finite elements in it constitutes a σ -locally finite family. Furthermore, we prove that the existence of a T 1 Baire irresolvable space is equivalent to the existence of...

Maximal nowhere dense P -sets in basically disconnected spaces and F -spaces

Andrey V. Koldunov, Aleksandr I. Veksler (2001)

Commentationes Mathematicae Universitatis Carolinae

In [5] the following question was put: are there any maximal n.d. sets in ω * ? Already in [9] the negative answer (under MA) to this question was obtained. Moreover, in [9] it was shown that no P -set can be maximal n.d. In the present paper the notion of a maximal n.d. P -set is introduced and it is proved that under CH there is no such a set in ω * . The main results are Theorem 1.10 and especially Theorem 2.7(ii) (with Example in Section 3) in which the problem of the existence of maximal n.d. P -sets...

Maximal pseudocompact spaces and the Preiss-Simon property

Ofelia Alas, Vladimir Tkachuk, Richard Wilson (2014)

Open Mathematics

We study maximal pseudocompact spaces calling them also MP-spaces. We show that the product of a maximal pseudocompact space and a countable compact space is maximal pseudocompact. If X is hereditarily maximal pseudocompact then X × Y is hereditarily maximal pseudocompact for any first countable compact space Y. It turns out that hereditary maximal pseudocompactness coincides with the Preiss-Simon property in countably compact spaces. In compact spaces, hereditary MP-property is invariant under...

Currently displaying 761 – 780 of 1977