New types of almost countable dense homogeneous space.
Assuming OCA, we shall prove that for some pairs of Fréchet -spaces , the Fréchetness of the product implies that is . Assuming MA, we shall construct a pair of spaces satisfying the assumptions of the theorem.
We prove some generalizations of results concerning Valdivia compact spaces (equivalently spaces with a commutative retractional skeleton) to the spaces with a retractional skeleton (not necessarily commutative). Namely, we show that the dual unit ball of a Banach space is Corson provided the dual unit ball of every equivalent norm has a retractional skeleton. Another result to be mentioned is the following. Having a compact space , we show that is Corson if and only if every continuous image...
It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group has a normal remainder. In a previous paper we showed that under mild conditions on , the Continuum Hypothesis implies that if the Čech-Stone remainder of is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight is uncountable...
J. Terasawa in " are non-normal for non-discrete spaces " (2007) and the author in “On non-normality points and metrizable crowded spaces” (2007), independently showed for any metrizable crowded space that each point of its Čech–Stone remainder is a non-normality point of . We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space.
Let X be a crowded metric space of weight κ that is either -like or locally compact. Let y ∈ βX∖X and assume GCH. Then a space of nonuniform ultrafilters embeds as a closed subspace of (βX∖X)∖y with y as the unique limit point. If, in addition, y is a regular z-ultrafilter, then the space of nonuniform ultrafilters is not normal, and hence (βX∖X)∖y is not normal.
We revisit an old question of Knaster by demonstrating that each non-degenerate plane hereditarily unicoherent continuum X contains a proper, non-degenerate subcontinuum which does not separate X.