Displaying 41 – 60 of 129

Showing per page

Fixed points for cyclic orbital generalized contractions on complete metric spaces

Erdal Karapınar, Salvador Romaguera, Kenan Taş (2013)

Open Mathematics

We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir-Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293–303]. Our results generalize some...

Fixed points of multivalued contractions with nonclosed, nonconvex values

Salvatore A. Marano (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

For a class of multivalued contractions with nonclosed, nonconvex values, the set of all fixed points is proved to be nonempty and arcwise connected. Two applications are then developed. In particular, one of them is concerned with some properties of the set of all classical trajectories corresponding to continuous controls for a given nonlinear control system.

Functor of extension of Λ -isometric maps between central subsets of the unbounded Urysohn universal space

Piotr Niemiec (2010)

Commentationes Mathematicae Universitatis Carolinae

The aim of the paper is to prove that in the unbounded Urysohn universal space 𝕌 there is a functor of extension of Λ -isometric maps (i.e. dilations) between central subsets of 𝕌 to Λ -isometric maps acting on the whole space. Special properties of the functor are established. It is also shown that the multiplicative group { 0 } acts continuously on 𝕌 by Λ -isometries.

Homogeneity and rigidity in Erdös spaces

Klaas P. Hart, Jan van Mill (2018)

Commentationes Mathematicae Universitatis Carolinae

The classical Erdös spaces are obtained as the subspaces of real separable Hilbert space consisting of the points with all coordinates rational or all coordinates irrational, respectively. One can create variations by specifying in which set each coordinate is allowed to vary. We investigate the homogeneity of the resulting subspaces. Our two main results are: in case all coordinates are allowed to vary in the same set the subspace need not be homogeneous, and by specifying different sets for different...

Measure-Theoretic Characterizations of Certain Topological Properties

David Buhagiar, Emmanuel Chetcuti, Anatolij Dvurečenskij (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

It is shown that Čech completeness, ultracompleteness and local compactness can be defined by demanding that certain equivalences hold between certain classes of Baire measures or by demanding that certain classes of Baire measures have non-empty support. This shows that these three topological properties are measurable, similarly to the classical examples of compact spaces, pseudo-compact spaces and realcompact spaces.

Metric enrichment, finite generation, and the path coreflection

Alexandru Chirvasitu (2024)

Archivum Mathematicum

We prove a number of results involving categories enriched over CMet, the category of complete metric spaces with possibly infinite distances. The category CPMet of path complete metric spaces is locally 1 -presentable, closed monoidal, and coreflective in CMet. We also prove that the category CCMet of convex complete metric spaces is not closed monoidal and characterize the isometry- 0 -generated objects in CMet, CPMet and CCMet, answering questions by Di Liberti and Rosický. Other results include...

Currently displaying 41 – 60 of 129