Regular maps and products of p-quotient maps
Louis Friedler (1973)
Fundamenta Mathematicae
D. V. Thampuran (1970)
Matematički Vesnik
Porter, Kathryn F. (2001)
International Journal of Mathematics and Mathematical Sciences
Juan Margalef Roig, Enrique Outerelo Domínguez (1979)
Revista Matemática Hispanoamericana
En el párrafo 1 se describe el isomorfismo uniforme existente entre la compleción de Hausdorff de un espacio métrico y la compleción de Weil del espacio uniforme separado asociado al espacio métrico.En el párrafo 2 se construye la compleción reducida de un espacio seudométrico y se describe el isomorfismo uniforme existente entre la compleción reducida de un espacio seudométrico y la compleción reducida del espacio uniforme asociado al espacio seudométrico.Finalmente, a lo largo del párrafo 3, se...
Z. Balogh (1978)
Fundamenta Mathematicae
A. V. Arhangel'skii (2013)
Fundamenta Mathematicae
We continue the study of remainders of metrizable spaces, expanding and applying results obtained in [Fund. Math. 215 (2011)]. Some new facts are established. In particular, the closure of any countable subset in the remainder of a metrizable space is a Lindelöf p-space. Hence, if a remainder of a metrizable space is separable, then this remainder is a Lindelöf p-space. If the density of a remainder Y of a metrizable space does not exceed , then Y is a Lindelöf Σ-space. We also show that many of...
Petr Holický (1981)
Commentationes Mathematicae Universitatis Carolinae
Jan Pelant (1975)
Commentationes Mathematicae Universitatis Carolinae
Rastislav Telgársky (1987)
Colloquium Mathematicae
William Kirk, Bancha Panyanak (2009)
Annales UMCS, Mathematica
An R-tree is a geodesic space for which there is a unique arc joining any two of its points, and this arc is a metric segment. If X is a closed convex subset of an R-tree Y, and if T: X → 2Y is a multivalued mapping, then a point z for which [...] is called a point of best approximation. It is shown here that if T is an ε-semicontinuous mapping whose values are nonempty closed convex subsets of Y, and if T has at least two distinct points of best approximation, then T must have a fixed point. We...
Jan Fried, Aarno Hohti (1984)
Commentationes Mathematicae Universitatis Carolinae
Nhu Nguyen (1984)
Fundamenta Mathematicae
Nguyen Van Luong, Nguyen Xuan Thuan, K. P. R. Rao (2013)
Matematički Vesnik
Pelant, Jan, Rice, Michael D. (1978)
Seminar Uniform Spaces
Juliusz Olędzki, Stanisław Spież (1983)
Fundamenta Mathematicae
Pultr, Aleš (1984)
Proceedings of the 12th Winter School on Abstract Analysis
Ge, Ying (2007)
Applied Mathematics E-Notes [electronic only]
Luong Quoc Tuyen (2012)
Commentationes Mathematicae Universitatis Carolinae
In this paper, we prove that each sequence-covering and boundary-compact map on -metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in [Lin.F.C.and.Lin.S-2011].
Boris S. Klebanov (1982)
Commentationes Mathematicae Universitatis Carolinae
Jean-Louis Tu (2001)
Bulletin de la Société Mathématique de France
Guoliang Yu has introduced a property on discrete metric spaces and groups, which is a weak form of amenability and which has important applications to the Novikov conjecture and the coarse Baum–Connes conjecture. The aim of the present paper is to prove that property in particular examples, like spaces with subexponential growth, amalgamated free products of discrete groups having property A and HNN extensions of discrete groups having property A.