Cell-like resolutions preserving cohomological dimensions.
A bottleneck in a dendroid is a continuum that intersects every arc connecting two non-empty open sets. Piotr Minc proved that every dendroid contains a point, which we call a center, contained in arbitrarily small bottlenecks. We study the effect that the set of centers in a dendroid has on its structure. We find that the set of centers is arc connected, that a dendroid with only one center has uncountably many arc components in the complement of the center, and that, in this case, every open set...
A homeomorphism f : X → X of a compactum X is expansive (resp. continuum-wise expansive) if there is c > 0 such that if x, y ∈ X and x ≠ y (resp. if A is a nondegenerate subcontinuum of X), then there is n ∈ ℤ such that (resp. ). We prove the following theorem: If f is a continuum-wise expansive homeomorphism of a compactum X and the covering dimension of X is positive (dim X > 0), then there exists a σ-chaotic continuum Z = Z(σ) of f (σ = s or σ = u), i.e. Z is a nondegenerate subcontinuum...
We prove that a continuum X is tree-like (resp. circle-like, chainable) if and only if for each open cover 𝓤₄ = {U₁,U₂,U₃,U₄} of X there is a 𝓤₄-map f: X → Y onto a tree (resp. onto the circle, onto the interval). A continuum X is an acyclic curve if and only if for each open cover 𝓤₃ = {U₁,U₂,U₃} of X there is a 𝓤₃-map f: X → Y onto a tree (or the interval [0,1]).
The Kuratowski-Dugundji theorem that a metrizable space is an absolute (neighborhood) extensor in dimension n iff it is (resp., ) is extended to a class of non-metrizable absolute (neighborhood) extensors in dimension n. On this base, several facts concerning metrizable extensors are established for non-metrizable ones.