Dimension of indiscernibility equivalences
Hurewicz's dimension-raising theorem states that dim Y ≤ dim X + n for every n-to-1 map f: X → Y. In this paper we introduce a new notion of finite-to-one like map in a large scale setting. Using this notion we formulate a dimension-raising type theorem for asymptotic dimension and asymptotic Assouad-Nagata dimension. It is also well-known (Hurewicz's finite-to-one mapping theorem) that dim X ≤ n if and only if there exists an (n+1)-to-1 map from a 0-dimensional space onto X. We formulate a finite-to-one...
It is shown that for every n ≥ 2 there exists an n-dimensional locally connected Polish space with Dimensionsgrad 1.
We study domain-representable spaces, i.e., spaces that can be represented as the space of maximal elements of some continuous directed-complete partial order (= domain) with the Scott topology. We show that the Michael and Sorgenfrey lines are of this type, as is any subspace of any space of ordinals. We show that any completely regular space is a closed subset of some domain-representable space, and that if X is domain-representable, then so is any -subspace of X. It follows that any Čech-complete...
For a subspace A of a space X, a linear extender φ:C(A) → C(X) is called an -extender (resp. -extender) if φ(f)[X] is included in the convex hull (resp. closed convex hull) of f[A] for each f ∈ C(A). Consider the following conditions (i)-(vii) for a closed subset A of a GO-space X: (i) A is a retract of X; (ii) A is a retract of the union of A and all clopen convex components of X; (iii) there is a continuous -extender φ:C(A × Y) → C(X × Y), with respect to both the compact-open topology and...