Isolated points and redundancy
We describe the isolated points of an arbitrary topological space . If the -specialization pre-order on has enough maximal elements, then a point is an isolated point in if and only if is both an isolated point in the subspaces of -kerneled points of and in the -closure of (a special case of this result is proved in Mehrvarz A.A., Samei K., On commutative Gelfand rings, J. Sci. Islam. Repub. Iran 10 (1999), no. 3, 193–196). This result is applied to an arbitrary subspace of the prime...