An atriodic tree-like continuum with positive span
It is shown that a certain indecomposable chainable continuum is the domain of an exactly two-to-one continuous map. This answers a question of Jo W. Heath.
Confluence of a mapping between topological spaces can be defined by several ways. J.J. Charatonik asked if two definitions of the confluence using the components and quasi-components are equivalent for surjective mappings with compact point inverses. We give the negative answer to this question in Example 2.1.
Such spaces in which a homeomorphic image of the whole space can be found in every open set are called self-homeomorphic. W.J. Charatonik and A. Dilks asked if any strongly self-homeomorphic dendrite is pointwise self-homeomorphic. We give a negative answer in Example 2.1.
Such spaces in which a homeomorphic image of the whole space can be found in every open set are called self-homeomorphic. W.J. Charatonik and A. Dilks posed a problem related to strongly pointwise self-homeomorphic dendrites. We solve this problem negatively in Example 2.1.
We prove an extension of the well-known combinatorial-topological lemma of E. Sperner to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem.
A new numerical invariant for the category of compact metric spaces and Lipschitz maps is introduced. This invariant takes a value less than or equal to 1 for compact metric spaces that are Lipschitz isomorphic to ultrametric ones. Furthermore, a theorem is provided which makes it possible to compute this invariant for a large class of spaces. In particular, by utilizing this invariant, it is shown that neither a fat Cantor set nor the set is Lipschitz isomorphic to an ultrametric space.
Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define to be X ∩ M with topology generated by . Suppose is homeomorphic to the irrationals; must ? We have partial results. We also answer a question of Gruenhage by showing that if is homeomorphic to the “Long Cantor Set”, then .